Het onderzoek naar het vestibulair implantaat is in de afgelopen twee decennia sterk toegenomen. Hoewel de eerste concepten en experimenten al in de jaren 60 en 70 plaatsvonden, hebben recente technologische en neurofysiologische vooruitgangen het veld aanzienlijk versneld. Sinds het begin van de jaren 2000 zijn er steeds meer preklinische en klinische studies verschenen die de haalbaarheid en veiligheid van vestibulaire implantaten onderzoeken. De focus ligt hierbij op het herstellen van de functie van de halfcirkelvormige kanalen, die verantwoordelijk zijn voor het detecteren van hoofdbewegingen.
In dit overzicht worden de belangrijkste wetenschappelijke artikelen die ik heb kunnen vinden verzameld en regelmatig bijgewerkt.
Artikelen
Vermorken, BL, Volpe, B, van Boxel, SCJ, Stultiens, JJA, van Hoof, M, Marcellis, R, et al. The VertiGO! Trial protocol: a prospective, single-center, patient-blinded study to evaluate efficacy and safety of prolonged daily stimulation with a multichannel vestibulocochlear implant prototype in bilateral vestibulopathy patients. PLoS One. (2024) 19:e0301032. doi: 10.1371/journal.pone.0301032
Van Boxel, S. C. J., Vermorken, B. L., Volpe, B., Guinand, N., Perez-Fornos, A., Devocht, E. M. J., & Van de Berg, R. (2024). The vestibular implant: effects of stimulation parameters on the electrically-evoked vestibulo-ocular reflex. Frontiers in Neurology, 15. https://doi.org/10.3389/fneur.2024.1483067
Loos, E, Stultiens, JJA, Volpe, B, Vermorken, BL, Van Boxel, SCJ, Devocht, EMJ, et al. Optimizing vestibular implant electrode positioning using fluoroscopy and intraoperative CT imaging. Eur Arch Otorrinolaringol. (2024) 281:3433–41. doi: 10.1007/s00405-023-08428-5
Starkov, D, Pleshkov, M, Guinand, N, Perez Fornos, A, Ranieri, M, Cavuscens, S, et al. Optimized signal analysis to quantify the non-linear behaviour of the electrically evoked vestibulo-ocular reflex in patients with a vestibular implant. Audiol Neurotol. (2022) 27:458–68. doi: 10.1159/000525577
Starkov, D, Guinand, N, Lucieer, F, Ranieri, M, Cavuscens, S, Pleshkov, M, et al. Restoring the high-frequency dynamic visual acuity with a vestibular implant prototype in humans. Audiol Neurotol. (2020) 25:91–5)(1-2):91-5. doi: 10.1159/000503677
Crétallaz, C, Boutabla, A, Cavuscens, S, Ranieri, M, Nguyen, TAK, Kingma, H, et al. Influence of systematic variations of the stimulation profile on responses evoked with a vestibular implant prototype in humans. J Neural Eng. (2020) 17:036027. doi: 10.1088/1741-2552/ab8342
Boutabla, A, Cavuscens, S, Ranieri, M, Crétallaz, C, Kingma, H, van de Berg, R, et al. Simultaneous activation of multiple vestibular pathways upon electrical stimulation of semicircular canal afferents. J Neurol. (2020) 267:273–84. doi: 10.1007/s00415-020-10120-1
Boutros, PJ, Schoo, DP, Rahman, M, Valentin, NS, Chow, MR, Ayiotis, AI, et al. Continuous vestibular implant stimulation partially restores eye-stabilizing reflexes. JCI Insight. (2019) 4:e128397. doi: 10.1172/jci.insight.128397
Guyot, J-P, and Perez, FA. Milestones in the development of a vestibular implant. Curr Opin Neurol. (2019) 32:145–53. doi: 10.1097/WCO.0000000000000639
Nguyen, TAK, Cavuscens, S, Ranieri, M, Schwarz, K, Guinand, N, van de Berg, R, et al. Characterization of Cochlear, vestibular and Cochlear-vestibular electrically evoked compound action potentials in patients with a Vestibulo-Cochlear implant. Front Neurosci. (2017) 11:645. doi: 10.3389/fnins.2017.00645
DiGiovanna, J, Nguyen, TA, Guinand, N, Pérez-Fornos, A, and Micera, S. Neural network model of vestibular nuclei reaction to onset of vestibular prosthetic stimulation. Front Bioeng Biotechnol. (2016) 4:34. doi: 10.3389/fbioe.2016.00034
Guinand, N, Van de Berg, R, Cavuscens, S, Stokroos, R, Ranieri, M, Pelizzone, M, et al. Restoring visual acuity in dynamic conditions with a vestibular implant. Front Neurosci. (2016) 10:577. doi: 10.3389/fnins.2016.00577
Guinand, N, van de Berg, R, Cavuscens, S, Stokroos, RJ, Ranieri, M, Pelizzone, M, et al. Vestibular implants: 8 years of experience with electrical stimulation of the vestibular nerve in 11 patients with bilateral vestibular loss. ORL. (2015) 77:227–40. doi: 10.1159/000433554
van de Berg, R, Guinand, N, Nguyen, TAK, Ranieri, M, Cavuscens, S, Guyot, J-P, et al. The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans. Front Syst Neurosci. (2015) 8:255. doi: 10.3389/fnsys.2014.00255
Perez Fornos, A, Guinand, N, van de Berg, R, Stokroos, R, Micera, S, Kingma, H, et al. Artificial balance: restoration of the Vestibulo-ocular reflex in humans with a prototype vestibular Neuroprosthesis. Front Neurol. (2014) 5:66. doi: 10.3389/fneur.2014.00066
Davidovics, NS, Rahman, MA, Dai, C, Ahn, J, Fridman, GY, and Della Santina, CC. Multichannel vestibular prosthesis employing modulation of pulse rate and current with alignment precompensation elicits improved VOR performance in monkeys. J Assoc Res Otolaryngol. (2013) 14:233–48. doi: 10.1007/s10162-013-0370-7
Davidovics, NS, Fridman, GY, Chiang, B, and Della Santina, CC. Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve. IEEE Trans Neural Syst Rehabil Eng. (2011) 19:84–94. doi: 10.1109/TNSRE.2010.2065241
van de Berg, R, Guinand, N, Stokroos, RJ, Guyot, JP, and Kingma, H. The vestibular implant: quo vadis? Front Neurol. (2011) 2:47. doi: 10.3389/fneur.2011.00047
Macherey, O, van Wieringen, A, Carlyon, RP, Deeks, JM, and Wouters, J. Asymmetric pulses in cochlear implants: effects of pulse shape, polarity, and rate. J Assoc Res Otolaryngol. (2006) 7:253–66. doi: 10.1007/s10162-006-0040-0
Grill, WM Jr, and Mortimer, JT. The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans Biomed Eng. (1996) 43:161–6. doi: 10.1109/10.481985
Suzuki, JI, Goto, K, Tokumasu, K, and Cohen, B. Implantation of electrodes near individual vestibular nerve branches in mammals. Ann Otol Rhinol Laryngol. (1969) 78:815–26. doi: 10.1177/000348946907800414